LIMNOLOGY form, R-8056 (reduced to fit on this page).

						MIC	CHIGAN	I DEPAI	Fisheries Di		RESOURCE	:5		LIMNOL	R-8056 4/8
ter _									_ R	_ Sec					
unty _							ld					Statio	on		
Depth M	Temp.	O ₂	Depth M	Temp.	O ₂	Time AM PM	Temp. Air °C	Sky	Wave condition 1	Preceding weather	Maximum depth of vegetation	Percent shoal (< 5M)	Water color ❖	Secchi disc (0.1m)	Chlorophyll 8
\dashv											<u></u>				L
						Pollution	(//) Noi	ne	Light	Moderate	s	evere			
										Cher	nical	Other			
						Comr	nents: _								
-					-	Vegetation				ne (N), sparse (E).
						1	Subm Floati	nergent <u> </u>				Emergent _ Chara			
							Paramete	,	Sur	face	Mid-depth	(M)	T	Bottom (wi	thin 1M)
-						pH							\perp		
						Alkalinit			pHth	MO	pHth	МО	pHtl	h MC)
				 		Conduc							+		-
-					 		ded solid	9							
						Total so									
-							nosphoru: hosphoru								
				 	-	Nitrate	nospnoru	8					_		
						Nitrite									
						Ammon	-								
					 	Organic	nitrogen	-							
, ,			white		- 0.00	ar, ngik o	own, or	own, dark	brown, turbid.						(ovi
		Option	nal obse	ervations	s:										(ove
		Option	nal obse	ervations	s: ters and	alyzed by		ike Manag	gement Unit:			Rollom	(within	1140	(ove
		Option	nal obse	ervations	s: ters and				gement Unit:	Mid-depth (M)	Bottom	(within	1M)	(ove
		Option	nal obse	ervations	s: ters and	alyzed by		ike Manag	gement Unit:		M)	Bottom	(within	1M)	(ove
		Option	nal obse	ervations	s: ters and	alyzed by		ike Manag	gement Unit:		M)	Bottom	(within	1M)	(ove
		Option	nal obse	ervations	s: ters and	alyzed by		ike Manag	gement Unit:		M)	Bottom	(within	1M)	(ove
		Option	nal obse	ervations	s: ters and	alyzed by		ike Manag	gement Unit:		M)	Bottom	(within	1M)	(ove
		Option	nal obse	ervations	s: ters and	alyzed by		ike Manag	gement Unit:		M)	Bottom	(within	1M)	(ove
		Option 1. Add	nal obse	ervations parame	s: Para	alyzed by	Inland La	surfa	gement Unit:		M)	Bottom	(within	1M)	(ove
		Option 1. Add	nal obse	ervations parame	s: Para	alyzed by	Inland La	surfa	gement Unit:		M)	Bottom	(within	1M)	(ove
		Option 1. Add	nal obse	ervations parame	s: Para	alyzed by	Inland La	surfa	gement Unit:		M)	Bottom	(within	1M)	(ove
		Optior 1. Add 2. Add —	nal obse ditional	ervation: parame	s: Para	nlyzed by meter	of lake:	ske Manag Surfa	pement Unit:	Mid-depth ((within	1M)	(ove
		Optior 1. Add 2. Add —	nal obse ditional	ervation: parame	s: Para	nlyzed by meter	of lake:	ske Manag Surfa	pement Unit:				(within	1M)	(ove
		Optior 1. Add 2. Add —	nal obse ditional	ervation: parame	s: Para	nlyzed by meter	of lake:	ske Manag Surfa	pement Unit:	Mid-depth ((within	1M)	(ove
		Optior 1. Add 2. Add —	nal obse ditional	ervation: parame	s: Para	nlyzed by meter	of lake:	ske Manag Surfa	pement Unit:	Mid-depth ((within	1M)	(ove
		Optior 1. Add 2. Add —	nal obse ditional	ervation: parame	s: Para	nlyzed by meter	of lake:	ske Manag Surfa	pement Unit:	Mid-depth ((within	1M)	(ove
		Optior 1. Add 2. Add —	nal obse ditional	ervation: parame	s: Para	nlyzed by meter	of lake:	ske Manag Surfa	pement Unit:	Mid-depth ((within	1M)	(ove
		Optior 1. Add 2. Add —	nal obse ditional	ervation: parame	s: Para	nlyzed by meter	of lake:	ske Manag Surfa	pement Unit:	Mid-depth ((within	1M)	(ove
		Optior 1. Add 2. Add —	nal obse ditional	ervation: parame	s: Para	nlyzed by meter	of lake:	ske Manag Surfa	pement Unit:	Mid-depth ((within	1M)	(ove
		Optior 1. Add 2. Add —	nal obse ditional	ervation: parame	s: Para	nlyzed by meter	of lake:	ske Manag Surfa	pement Unit:	Mid-depth ((within	1M)	(ove
		Optior 1. Add 2. Add —	nal obse ditional	ervation: parame	s: Para	nlyzed by meter	of lake:	ske Manag Surfa	pement Unit:	Mid-depth ((within	1M)	(ove
		Optior 1. Add 2. Add —	nal obse ditional	ervation: parame	s: Para	nlyzed by meter	of lake:	ske Manag Surfa	pement Unit:	Mid-depth ((within	1M)	(ove
		Optior 1. Add 2. Add —	nal obse ditional	ervation: parame	s: Para	nlyzed by meter	of lake:	ske Manag Surfa	pement Unit:	Mid-depth ((within	1M)	(ow