STUDY PERFORMANCE REPORT

State: Michigan

Study No.: <u>680</u>

Project No.: <u>F-81-R-1</u>

Title: <u>Patterns in community structure, life</u> <u>histories, and ecological distributions of</u> fishes in Michigan rivers

Period Covered: October 1, 1999 to September 30, 2000

- **Study Objectives:** 1) To develop models that explain abundance patterns of the most common fishes in Lower Michigan streams; 2) to evaluate the role of landscape-scale characteristics of streams in favoring fishes having particular life history characteristics; 3) to develop an atlas describing the geographic and ecological distributions of fishes in Lower Michigan streams.
- **Summary:** We amended the study to allow for further collection of summer stream temperature data. We finalized our approach to modeling fish densities and developed final models for common Michigan fishes. We used covariance structure analysis to test hypotheses regarding relations among correlated catchment-, reach-, and site-scale habitat variables and fish abundance. The results of these analyses will be presented in two Michigan Department of Natural Resources Fisheries Division research reports.

Job 3. Title: Develop ecological atlas.

Findings: Most data needed for constructing graphical models of fish ecological distributions were obtained under Study 631. Analysis of stream temperature model predictions indicated that models predictions were somewhat biased for Michigan Rivers Inventory (MRI) sites having July mean temperatures less than 18 °C or greater than 24 °C. Model predictions of the weekly range in July weekly temperature were inaccurate ($R^2 = 0.13$). As a result, this study was amended to allow for collection of additional measurements of stream temperature conditions at MRI sites having fish abundance data. This will enable development of more accurate graphical models relating these parameters to fish abundance. Through cooperative efforts with field personnel, we collected and summarized July 1999 temperature data for 31 MRI sites.

Job 4. Title: Write report.

Findings: We changed our approach to modeling fish densities after further analysis of preliminary logistic regression models developed in 1998-99. These 64 models were 84% correct (average of all models) in explaining species' presence or absence, but each model's ability to correctly predict presence or absence appeared to be influenced by how rarely or commonly a species occurred in the data (Figure 1). As a result, few of the models were reliable predictors of both presence and absence. Therefore, we used multiple linear regression techniques instead to develop two predictive models for each species. The two models were based on different sets of data: 1) sites having population estimates for the entire fish assemblage; and 2) only those sites where the species of interest occurred. The first set of models provides coarser-scale predictions

for any site on Lower Michigan rivers and identifies important variables related to each species' distribution in Lower Michigan (Table 1). The second set of models gives higher-resolution predictions and identifies additional local-scale factors related to fish biomass. For example, the latter model for brown trout (Table 2) included only four independent variables (as opposed to nine in the former model), and suggested that among brown trout streams, higher brown trout biomass occurred in lower gradient rivers having colder July mean temperatures, more gravel, and less cobble. Models for all species will be presented in a Michigan Department of Natural Resources, Fisheries Research Report tentatively entitled, "Predictive models for common fishes in Lower Michigan rivers".

Teasing out the effects of individual habitat variables on fish biomass is complex due to collinearities among habitat variables. For example, do brown trout really have an aversion to cobble-bottomed streams, or is the negative coefficient for cobble the result of collinearities between it and the gravel or gradient variables? Covariance structure analysis (Maruyama 1998) allows the analyst to explicitly test theories regarding the effects of correlated variables on each other and on the dependent variable. We used such analyses to test hypothesized relations among catchment-, reach-, and site-scale habitat variables and fish abundance. This analysis will be presented in a MDNR Fisheries Research Report tentatively entitled, "Relations among catchment-, reach-, and site-scale habitat variables and fish abundance in Lower Michigan rivers".

Literature Cited:

Maruyama, G.M. 1998. Basics of structural equation modeling. SAGE Publications, Inc., Thousand Oaks, California.

Prepared by: <u>Troy G. Zorn</u> Date: <u>September 30, 2000</u>

Figure 1.–Percent of sites having correct predictions of species' presence or absence plotted against the number of sites where each species occurs. Predictions are by preliminary logistic regression models developed for 64 species of fishes in Lower Michigan rivers. Plot shows that the ability of models to accurately predict both presence and absence is limited when fishes occur at few or many sites in the database.

Table 1.–Preliminary multiple linear regression model outputs for a) brown trout; b) common carp; and c) creek chub. Dependent variable was \log_{10} (fish biomass + 0.001) expressed as kg/ha. Independent variables are as follows: BESTMEAN= measured (if available) or predicted July mean temperature in C; BESTMEA2= BESTMEAN squared; LG90CMSK= \log_{10} of the measured (if available) or predicted 90% exceedence flow divided by drainage area in cms/km²; LG90CMK2= LG90CMSK squared; GRAVELLG= percent of the substrate that is gravel or larger; BNKST= percent of streambank at the site that is stable; GRADPERC= reach gradient as a percent; LGBWATER= \log_{10} percent lakes, ponds, and streams in a 2-km total width buffer of the upstream drainage network; PONDUPST= the occurrence of a pond less than 3-km upstream of the site (1=yes; 0=no); BIGRIVER= if the site is on or is connected to a big (>1000 km²) river (1=yes; 0=no); OUTWGEO= percent of the catchment comprised of outwash geology; TOTPPM measured (if available) or predicted summer total phosphorus in mg/L; LOGDAKM= \log_{10} of the measured (if available) or predicted summer total phosphorus in mg/L; LOGDAKM= \log_{10} of the measured (if available) or predicted summer total phosphorus in mg/L; LOGDAKM= \log_{10} of the measured (if available) or predicted summer total phosphorus in mg/L; LOGDAKM= \log_{10} of the measured (if available) or predicted summer total phosphorus in mg/L; LOGDAKM= \log_{10} of the measured (if available) or predicted summer total phosphorus in mg/L; LOGDAKM= \log_{10} of the measured (if available) or predicted summer total phosphorus in mg/L; LOGDAKM= \log_{10} of the measured drainage area in km², LGAGRIC= percent of the catchment having agricultural land use.

a) Brown trout

Model Summary							
.394	.370	1.2757					
Sum of Squares	df	Mean Square	F	Sig.			
244.170 375.959 620.129	9 231 240	27.130 1.628	16.669	.000			
	R Square .394 Sum of Squares 244.170 375.959	Adjusted R Square R Square .394 .370 Sum of Squares df 244.170 9 375.959 231	Adjusted R SquareStd. Error the Estir.394.3701.2757Sum of SquaresMean Square244.170927.130 1.628	Adjusted R SquareStd. Error of the Estimate.394.3701.2757Sum of SquaresMean SquareF244.170927.13016.669 1.628			

Coefficients

Variable	Unstandardized Coefficients B	Std. Error	Standardized Coefficients Beta	t	Sig.
(Constant)	-9.584	3.397		-2.821	.005
BESTMEAN	.888	.305	1.621	2.910	.004
BESTMEA2	-2.614E-02	.007	-1.904	-3.619	.000
LG90CMSK	1.875	.565	.679	3.320	.001
LG90CMK2	.364	.171	.417	2.127	.035
GRAVELLG	1.280	.315	.231	4.061	.000
GRADPERC	587	.268	181	-2.192	.029
LGBWATER	624	.206	214	-3.029	.003
PONDUPST	643	.227	154	-2.839	.005
OUTWGEO	1.730	.445	.263	3.891	.000

b) Common carp

Model Summary

R	R Square	Adjusted R Square	Std. Error of the Estimate
.697	.486	.474	1.7515

Table 1.–Continued

ANOVA						
	Sum of		Mean			
	Squares	df	Square	F	Sig.	
Regression	743.914	6	123.986	40.414	.000	
Residual	785.375	256	3.068			
Total	1529.289	262				
Coefficients						
				Standardized		
** • • •		lardized	Std.	Coefficients		~
Variable		cients B	Error	Beta	t	Sig.
(Constant)	8.048		3.132	100	2.570	.011
TOTPPPM	10.881		3.536	.180	3.078	.002
LG90CMSK	394		.208	096	-1.890	.060
LOGDAKM	1.43		.237	.470	6.045	.000
LGAGRIC	.803		.323	.155	2.486	.014
BESTMEAN BESTMEA2		+ 3E-02	.309 .008	-1.732 1.793	-4.578	.000
DESTMEAZ	5.073	DE-02	.008	1.795	4.856	.000
c) Creek chu Model Summ						
		Adjusted	Std. Error	of		
R R	Square	Adjusted R Square	Std. Error the Estima			
	Square	-				
	-	R Square	the Estimation			
.591 .3	-	R Square	the Estimation			
.591 .3	50	R Square	the Estima 1.4133		Sig.	
.591 .3. ANOVA Regression	50 Sum of	R Square .335	the Estima 1.4133 Mean	ate	Sig. .000	
.591 .3 ANOVA Regression Residual	50 Sum of Squares 243.866 453.437	R Square .335 df 5 227	the Estima 1.4133 Mean Square	<u>ate</u> F		
.591 .3. ANOVA Regression	Sum of Squares 243.866	R Square .335 df 5	the Estima 1.4133 Mean Square 48.773	<u>ate</u> F		
.591 .3 ANOVA Regression Residual	50 Sum of Squares 243.866 453.437	R Square .335 df 5 227	the Estima 1.4133 Mean Square 48.773	<u>ate</u> F		
.591 .3 ANOVA Regression Residual Total	Sum of Squares 243.866 453.437 697.303	R Square .335 df 5 227	the Estima 1.4133 Mean Square 48.773	<u>ate</u> F		Sig.
.591 .3 ANOVA Regression Residual Total <i>Coefficients</i>	Sum of Squares 243.866 453.437 697.303 Unstand	R Square .335 df 5 227 232	the Estima 1.4133 Mean Square 48.773 1.998	F 24.417 Standardized Coefficients	.000	Sig.
.591 .3 ANOVA Regression Residual Total <i>Coefficients</i> Variable	Sum of Squares 243.866 453.437 697.303 Unstand Coeffic	R Square .335 df 5 227 232 dardized cients B	the Estima 1.4133 Mean Square 48.773 1.998 Std. Error	F 24.417 Standardized	.000 t	
.591 .3 ANOVA Regression Residual Total Coefficients Variable (Constant)	Sum of Squares 243.866 453.437 697.303 Unstand Coeffic -16.25	R Square .335 df 5 227 232 dardized cients B	the Estima 1.4133 Mean Square 48.773 1.998 Std. Error 2.506	F 24.417 Standardized Coefficients Beta	.000 t -6.487	.000
.591 .3. <u>ANOVA</u> Regression Residual Total <u>Coefficients</u> Variable (Constant) BESTMEAN	50 Sum of Squares 243.866 453.437 697.303 Unstand Coeffic -16.25 1.77	R Square .335 df 5 227 232 dardized cients B	the Estima 1.4133 Mean Square 48.773 1.998 Std. Error 2.506 .254	F 24.417 Standardized Coefficients Beta 3.049	.000 t -6.487 6.981	.000
.591 .3 ANOVA Regression Residual Total Coefficients Variable (Constant) BESTMEAN BESTMEA2	Sum of Squares 243.866 453.437 697.303 Unstand Coeffic -16.25 1.77 -4.32	R Square .335 df 5 227 232 dardized cients B 56 76 28E-02	the Estima 1.4133 Mean Square 48.773 1.998 Std. Error 2.506 .254 .006	F 24.417 Standardized Coefficients Beta 3.049 -2.943	.000 t -6.487 6.981 -6.775	.000 .000 .000
.591 .3 ANOVA Regression Residual Total Coefficients Variable (Constant) BESTMEAN BESTMEA2 BNKST	50 Sum of Squares 243.866 453.437 697.303 Unstand Coeffic -16.25 1.77 -4.32 -7.51	R Square .335 df 5 227 232 dardized cients B 56 76 28E-02 15E-03	the Estima 1.4133 Mean Square 48.773 1.998 Std. Error 2.506 .254 .006 .003	F 24.417 Standardized Coefficients Beta 3.049 -2.943 160	.000 t -6.487 6.981 -6.775 -2.893	.000 .000 .000 .000
.591 .3 ANOVA Regression Residual Total Coefficients Variable (Constant) BESTMEAN BESTMEA2	Sum of Squares 243.866 453.437 697.303 Unstand Coeffic -16.25 1.77 -4.32	R Square .335 df 5 227 232 dardized cients B 56 76 28E-02 15E-03 01	the Estima 1.4133 Mean Square 48.773 1.998 Std. Error 2.506 .254 .006	F 24.417 Standardized Coefficients Beta 3.049 -2.943	.000 t -6.487 6.981 -6.775	.000 .000 .000

Table 2.–Preliminary multiple linear regression model output for brown trout based on sites where brown trout occurred. Dependent variable was log_{10} (fish biomass + 0.001) expressed as kg/ha. Independent variables are as follows: BESTMEAN= measured (if available) or predicted July mean temperature in C; GRADPERC= reach gradient as a percent; SUBGR= percent of the substrate that was gravel; SUBCO= percent of the substrate that was cobble.

Brown trout- sites with >0 kg/ha

		0				
ттан	ry					
R S		U				
.467	7	.445	.5610			
			Mean Square	F	Sig.	
n	27.018	4	6.755	21.460	.000	
	30.846	98	.315			
	57.865	102				
ıts						
				Standardiz	ed	
	Unstand	lardized	Std.	Coefficien	its	
	Coeffic	ients B	Error	Beta	t	Sig.
)	5.08	1	.537		9.459	.000
RC	21	8	.103	174	-2.127	.036
	6.09	0E-03	.002	.516	2.622	.010
	-1.00	6E-02	.003	706	-3.547	.001
AN	20	8	.028	610	-7.452	.000
	R S	R Square .467 Sum of Squares on 27.018 30.846 57.865 <i>nts</i> Unstand Coeffic) 5.08 ERC21 6.09 -1.00	Adjusted R Square R Square .467 .445 Sum of Squares Squares df on 27.018 4 30.846 98 57.865 102 <i>nts</i> Unstandardized Coefficients B 2) S.081 218 6.090E-03 -1.006E-02	Adjusted Std. Error R Square R Square the Estimation .467 .445 .5610 Sum of Mean Squares df Square on 27.018 4 6.755 30.846 98 .315 57.865 102	AdjustedStd. Error of the EstimateR SquareR SquareR Square.467.445.5610Sum of SquaresMean Square $r27.0184 < 0.0186.755 < 0.01821.460 < 0.01830.846 < 98.315 < 57.865102ntsStandardizedCoefficients B < 0.018.537 < 0.02.516 < 0.02.516 < 0.002.516 < 1.006E-02.003 < 0.02.706$	Adjusted Std. Error of R Square R Square the Estimate .467 .445 .5610 Sum of Mean Squares of Square Sum of Mean Squares F Sig. on 27.018 4 6.755 21.460 .000 30.846 98 .315 .315 57.865 102 tts Unstandardized Std. Coefficients Linstandardized Std. Coefficients Coefficients Linstandardized Std. Coefficients 9.459 CRC 218 .103 174 -2.127 6.090E-03 .002 .516 2.622 -1.006E-02 .003 706 -3.547