STUDY PERFORMANCE REPORT

State: Michigan

Project No.: <u>F-81-R-4</u>

Study No.: <u>436</u>

Title: <u>Vital Statistics of walleyes in Saginaw</u> Bay

Period Covered: October 1, 2002 to September 30, 2003

- **Study Objective:** To determine exploitation, abundance, growth, mortality, movement, and recruitment for the walleye population in Saginaw Bay.
- **Summary:** A total of 3,000 walleyes *Sander vitreus* (formerly known as *Stizostedion vitreum*) were tagged in 2003 in the Tittabawassee River. The composition of walleyes collected for tagging in 2003 was again skewed towards males. A total of 349 tags were reported by anglers in 2002, representing 12 year classes. The tag recovery software, ESTIMATE was again used to analyze tag returns. The tag recovery rate was 5.01 percent for 2002, yielding a corresponding corrected exploitation rate of 11.7%. This estimate of exploitation rate represents a statistically significant increase from 2001 yet total harvest remained unchanged. The 2002 walleye fishery was again largely dependent on the strong 1997 and 1998 year classes. Female walleyes from the 1998 year class still were not fully recruited to the 2002 spawning run. Consequently, the population of tagged fish at large in 2002 didn't fully represent the fishable population and exploitation was possibly underestimated for that year (2002). Total annual survival for 2001 (the most recent year estimated) was 53.5%. A slightly revised correction factor of non-reporting based on reward tag returns has been derived updating previous values with additional years of tag return data. The new value, which should be more accurate, is 2.33. Age and growth analysis of 2003 samples are pending scale aging.

Findings: Jobs 1, 2, and 3 were scheduled for 2002-03, and progress is reported below.

Job 1. Title: <u>Tag walleyes.</u>-In 2003, a total of 3,000 serially-numbered monel tags were applied to the jaws of walleyes below Dow Dam on the Tittabawassee River, a tributary to Saginaw Bay (Table 1). Walleyes were collected with 230-volt DC electrofishing gear. We used a single boat and one or two tagging crews. About 600 walleyes were typically tagged per day. Tagging spanned about five days of work in early April. The collection effort also doubled as a spawn collected from Tittabawassee River walleyes are used for stocking in the Lake Huron watershed. The 2003 tagging effort brings the study total to 77,087 walleyes tagged since 1981 (Table 1).

Biological data were collected from all walleyes handled as part of the tagging program. Fish were measured for total length to the nearest mm. Tagging was limited to fish meeting or exceeding the 381-mm minimum length limit in the recreational fishery. Fish were externally sexed: mature males were ripe and easily identified; fish identified as females could have included some immature individuals of both sexes. Scales were taken from all walleyes tagged. A subsample of these scales from the height of the run is being aged. A single day of scale collection was selected for aging when the sex ratio most closely approximated 1:1.

Job 2. Title: <u>Determine tag correction factor.</u>-This job is complete (see 2001 Performance Report for details), however, the correction factor can be continually refined based on ongoing returns of

both reward and non-reward tags from the year 2000 (Table 2). This provides a slightly different correction factor compared to those previously reported and should be more accurate. As before, this analysis assumes that both groups have equal vulnerability to the fishery. The updated tag reporting correction factor is 2.33 (Table 2).

Job 3. Title: <u>Analyze data and prepare performance and final reports.</u>—The composition of walleyes collected from the spawning migration in the Tittabawassee River was again skewed towards male fish in 2002, which is considered to be an artifact of sex specific spawning migration patterns and not necessarily representative of the overall sex ratio in the population (Table 3). Mean total length of both sexes of walleyes from the spawning migration has not changed appreciably in recent years (Table 3).

Analysis of age structure and the corresponding growth rate of walleyes in the spawning migration has not yet been performed for 2003. Mean age of walleyes from the 2002 migration declined, for both sexes, as stronger year classes (1997 & 1998) become sexually mature (Table 4). The relatively weak year classes (1992, 1993, and 1996) are no longer discernable in the age structure with the possible exception of the 1993 year class (age-9) for male walleyes in 2002 (Table 4). The strong 1997 year class is fully recruited to the spawning migration, but females of the even stronger 1998 year class appeared only partially recruited in 2002. These trends account for the decrease in mean ages of both sexes. Female walleye mean age will likely also decrease in the 2003 migration. Female maturation usually begins around age 4.

Mean length-at-age exceeds the state average reported by Schneider et al. (2000) (Table 5). The fast growth rate of Saginaw Bay walleyes, which has long been documented under Michigan Federal Aid Study 466, indicates the population is well below carrying capacity of the bay's habitat and prey base (Fielder et al. 2000). Walleye growth rate has been a primary means of evaluating the status of recovery of the Saginaw Bay walleye population (Fielder et al. 2000). This analysis will be updated with the 2003 data upon completion of the scale aging.

In 2002 a total of 349 tags, spanning 12 year classes, were reported by anglers (Table 6). Using the tag-recovery program, ESTIMATE–Model 1 (for year-specific survival, fishing, and reporting rates) (Brownie et al. 1985), the following values were estimated.

2002 recovery rate (percent)	5.01
95% confidence interval	4.23-5.79
2001 survival rate (percent) 95% confidence interval	53.19 40.58-65.80
Mean adult life span after tagging (years) 95% confidence interval	2.20 2.11-2.30

Recovery rates reported here and in Table 6 represent year-specific rates from the ESTIMATE analysis and are the most up-to-date values. These may differ slightly from values previously reported for this study. The mean recovery rate for all years since 1986 was 3.41 (Table 6). Similarly, survival estimates used to determine total annual mortality rate (Table 7) are year specific and improve with reporting over time. Exploitation rate was estimated by expanding the year-specific recovery rate by a correction factor (for non-reporting) of 2.33, determined from Job 2 of this study.

Exploitation of walleyes in Saginaw Bay increased significantly in 2002 compared to 2001 (z-Test; P<0.05) (Table 7). Harvest, however, remained largely unchanged from 2001 (D. Clapp,

Michigan Department of Natural Resources, unpublished data). This might imply a smaller exploitable walleye population in 2002, however, the fishery is fully exploiting the strong 1998 year class which was not fully available for tagging in 2002. Consequently, the tagged population at large may not fully have reflected the true fishable population. Conversely, the 1997 year class which was tagged in 2002 may have been more vulnerable or more largely reflected in the harvest in 2002 whereby affecting possible disparities between the fishery and estimated exploitation rates. Beginning in 2003, the two should reconcile as the age structure of the spawning migration again better approximates those fish in the fishery. Total annual mortality, derived from the ESTIMATE survival estimates, increased slightly in 2001, the most recent value calculable with ESTIMATE (Table 7).

Analysis of the 2003 fishing season tag returns will take place in 2004.

Literature Cited:

- Brownie, C., D. R. Anderson, K. P. Burnham, and D. S. Robson. 1985. Statistical inference from band recovery data: a handbook. U. S. Fish and Wildlife Service, Resource Publication No. 156, Washington, D.C.
- Fielder, D. G., J. E. Johnson, J. R. Weber, M. V. Thomas, and R. C. Haas. 2000. Fish population survey of Saginaw Bay, Lake Huron, 1989 - 1997. Michigan Department of Natural Resources, Fisheries Research Report 2052, Ann Arbor.
- Schneider, J. C., P. W. Laarman, and H. Gowing. 2000. Age and growth methods and state averages. Chapter 9 in J. Schneider, editor. Manual of fisheries survey methods II: with periodic updates. Michigan Department of Natural Resources, Fisheries Special Report 25, Ann Arbor.

Prepared by: <u>David Fielder, Robert Haas, and Kathrin Schrouder</u> **Date:** <u>September 30, 2003</u>

<u> </u>
0
Õ
4
Ś
8
15
ĕ
ĥ
Ë
te
va
5
⊳,
3a
щ
≥
1a
н.
್ಷ
ŝ
51
te
.12
5
٦Ĝ,
م_
Ξ
ē
S
S
5
e,
Б
>
av
ü
ਛੋਂ
Ň
le S.
the Si
n the Si
in the Sa
ed in the Sa
ged in the Sa
gged in the Sa
tagged in the Sa
s tagged in the Sa
res tagged in the Sa
expess tagged in the St
lleyes tagged in the St
alleyes tagged in the St
walleyes tagged in the St
of walleyes tagged in the Sa
of walleyes tagged in the S
er of walleyes tagged in the Sa
ber of walleyes tagged in the Sa
mber of walleyes tagged in the Sa
'umber of walleyes tagged in the Sa
Number of walleyes tagged in the Sa
Number of walleyes tagged in the Sa
1Number of walleyes tagged in the Sa
e 1Number of walleyes tagged in the St
ble 1Number of walleyes tagged in the Sa
able 1Number of walleyes tagged in the Sa

Study	total ⁵	65,198 1,636	368	448	533	5,991	217	914	529	56	1,197	77,087
	2003	3,000	Ι	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	3,000
	2002	2,993	I	Ι	Ι	Ι	I	Ι	Ι	Ι	I	2,993
	2001	2,997 2	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	I	2,997
	000^{4}	,299 2	I	Ι	I	,993	I	Ι	Ι	Ι	I	,292
	999 2	,999 3 _	I	Ι	Ι	,997 2	I	Ι	Ι	Ι	Ι	,996
	998 1	,490 2 _	I	Ι	Ι	,994 2	I	Ι	Ι	Ι	I	,484 5
	997 1	993 2. -	I	Ι	I	- 2	I	I	Ι	I	I	993 5.
	996 1	992 2, -	I	Ι	Ι	I	I	Ι	Ι	Ι	I	992 2,
	995 19	970 2, -	I	Ι	Ι	I	I	I	I	Ι	I	970 2,
ear	94 19	999 2, -	I	Ι	Ι	I	I	Ι	Ι	Ι	I	999 2,
Υ	93 19)89 2, <u>9</u> -	I	Ι	Ι	I	I	I	Ι	I	I	989-2,9
	92 19	95 2,9 -	I	Ι	I	Ι	I	I	I	I	I	95 2,9
	91 19	79 2,9 -	I	Ι	Ι	I	I	Ι	Ι	I	I	79 2,5
	90 19	88 3,0 -	I	Ι	18	I	I	I	Ι	Ι	I	06 3,0
	6 16	94 2,4 97	74	Ι	-	Ι	20	I	Ι	Ι	I	72 2,9
	8 198	6 2,49 - 49		Ι	21	Ι	- 2(Ι	Ι	I	I	1 3,27
	7 198	0 4,03	9	S	- 11.	I	1	I	I	I	8	9 4,15
	1987	6,020	5	21:							- 1,10	7,399
	1986	2,923 608	I	59	I	I	0	511	529	I	I	4,630
	1985	3,335 531	Ι	174	Ι	Ι	I	60	Ι	Ι	Ι	4,100
	Site	Tittabawassee River Dow Dam Sanford Dam	Other rivers Kawkawlin River	Au Gres River	Saginaw River	Flint River ²	Saginaw Bay Consumers Power	Pt. Au Gres	Catfish Hole ³	Pinconning	Sand Point	Total

Tagged on May 7, 1988, in Saginaw River at Wickes Park during a walleye tournament.

²Returns analyzed and reported separately and not included in estimate model analysis. ³A 19-foot deep depression about seven miles southwest of Pt. Au Gres in Grid 1507 (includes 98 tagged). ⁴Includes 300 reward-tagged fish. ⁵ Total number since study inception in 1981.

Year	Number	Reward	Percent	Non-reward	Percent	Non-reporting Rate (Correction factor)
2000	Tagged	300		2997		
2000	Recovered	20	6.67	99	3.30	2.02
2001	Recovered	9	3.00	29	0.97	3.10
2002	Recovered	12	4.00	48	1.60	2.50
	Running total	41	13.67	176	5.87	2.33

Table 2.–Correction Factor from non-reporting as determined from comparison of rewarded tag returns vs. unrewarded tag returns as derived from 2000–2002.

Table 3.-Average total length (mm) of walleyes collected by electrofishing below Dow Dam, Tittabawassee River, March-April 1981-2003.

	Fer	nale	М	ale	Тс	otal
Year	Length	Number	Length	Number	Length	Number
1981	528	87	350	272	394	399
1982	516	179	452	513	467	697
1983	549	2,082	498	1,300	528	3,413
1984	584	1,052	472	2,421	505	3,540
1985	531	1,322	457	1,662	490	2,984
1986	536	1,370	465	2,023	493	3,574
1987	546	1,736	472	3,829	485	5,976
1988	582	549	477	3,338	490	4,033
1989	561	1,774	485	1,244	528	3,064
1990	582	972	493	1,481	528	2,467
1991	584	2,232	488	843	559	3,079
1992	610	1,491	483	1,497	556	2,995
1993	582	1,323	488	1,666	531	2,989
1994	599	1,452	531	1,534	564	2,999
1995	589	962	538	2,003	556	2,970
1996	627	1,376	556	1,614	589	2,992
1997	630	1,905	554	1,088	604	2,993
1998	589	1,170	544	1,311	564	2,489
1999	620	957	549	2,031	569	2,995
2000	630	531	540	2,756	555	3,299
2001	635	576	518	2,421	540	2,997
2002	594	809	536	2,178	551	2,993
2003	615	967	525	2,028	554	2,994

							А	ge							Mean
	1	2	3	4	5	6	7	8	9	10	11	12	13	14+	age
1989															
Female	_	_	1.5	41.4	27.3	23.1	5.7	1.1	_	_	_	_	_	_	4.9
Male	_	0.8	5.8	58.5	20.4	8.2	4.4	1.2	0.6	—	_	-	_	-	4.5
1990															
Female	-	0.1	0.1	1.2	37.1	34.7	22.9	3.6	0.4	_	_	-	-	-	5.9
Male	-	3.1	5.0	14.0	49.2	21.1	7.1	0.5	0.1	-	-	-	-	-	5.0
1991															
Female	-	—	0.1	18.8	19.2	45.7	11.5	2.6	1.5	0.6	—	-	—	—	5.7
Male	_	0.1	43.8	9.6	19.6	20.5	3.6	2.6	0.2	-	-	-	_	_	4.4
1992															
Female	-	0.1	0.0	9.4	14.5	12.1	17.9	13.7	10.2	12.9	4.6	3.0	1.7	0.2	7.5
Male	-	0.6	19.5	30.8	17.4	17.6	11.4	1.0	1.0	0.3	0.4	-	-	—	4.8
1993															
Female	-	_	1.6	13.7	31.8	11.7	18.6	14.6	6.5	1.2	0.3	-	-	_	6.1
Male	-	-	33.3	25.6	14.2	12.6	9.0	2.9	1.1	1.3	-	-	-	-	4.6
1994															
Female	-	—	1.3	17.3	32.7	16.0	7.7	12.2	7.7	1.9	1.3	0.6	-	—	6.0
Male	-	_	4.9	18.9	12.8	10.4	13.4	1/.1	12.8	4.9	1.2	_	-	_	6.5
1995				~ .					•	~ .					
Female	_	_	-	9.4	53.1	13.4	9.1	7.1	3.9	2.4	1.2	0.4	- 2	—	5.8
Male	-	-	1.3	9.0	20.5	21.0	12.7	14.0	12.5	/.6	0.7	0.4	0.2	_	6./
1996				• •	0.1	10.4	aa (10.1	10 (150	6.0	1.0			7 0
Female	-	—	-	0.2	9.1	18.4	22.6	13.1	12.6	15.9	6.9	1.3	_	_	7.8
Male	_	_	0.6	0.8	6.3	10.1	18.9	21.9	18.4	13.0	3.1	0.9	_	_	1.8
1997			0.4	4 1	1.2	11.0	260	22.0	10.4	0.4	7 1	4.0			7.0
Female	-	_	0.4	4.1	1.3	11.8	26.8	22.9	12.4	8.4	/.1	4.9	-	-	7.9 7.0
Male	-	_	_	1.3	0.5	13.2	23.0	27.3	10.1	9.2	4.0	2.0	_	0.0	7.9
1998			17	22 0	11.0		11.2	10.0	10.0	7.2	10	27	0.2		7.0
Female	_	_	1./	22.8	11.0	0.0	11.5	19.0	12.8	10.3	4.0	2.7	0.3	_	7.0
1000	_	_	0.0	9.5	5.4	4.0	10.4	22.1	1/./	10.5	0.2	1.5	0.9	_	7.0
Ecomolo			0.4	<u>۹</u>	12.2	4.0	15	11 /	21.2	196	0.0	69	0.4	0.4	02
Male	_	- 0.6	0.4	0.0	13.5	4.9	4.3 7 A	23.5	21.2 10.8	10.0	9.0 15	0.0	0.4	0.4	8.5 7.6
2000		0.0	1.7	15.2	0.5	5.2	7.т	25.5	17.0	12.7	т.Ј	1.2	0.0		7.0
2000 Female				0.6	11.2	1/0	10.6	13	13.0	20.5	137	81	25		87
Male	_		117	2.2	9.0	11.2	5.8	4.5	21.8	14 1	83	2.5	2.5	_	8.7 7 4
2001		т.т	11.7	2.2	9.0	11.7	5.0	0.2	21.0	17.1	0.5	2.5	0.0		7.4
2001 Female	_	_	27	75	5 8	Q /	122	8.0	97	15 5	14.6	11 5	22	00	86
Male	_	_	25.4	95	3.0	9. 4	10.5	11.0	14.2	95	54	19	0.5	0.9 —	6.6
2002			<i>_U</i> .r		5.0	7.1	10.0	11.0	± 1.4		0. r	1.7	5.5		0.0
2002 Female	_	_	_	16.5	38.0	15.2	95	38	44	38	38	25	19	0.6	63
Male	_	_	0.8	31.4	28.9	7.1	7.9	7.5	2.9	7.1	4.2	0.8	1.3	-	6.0

Table 4.–Age composition (percent) of walleyes sampled from Tittabawassee River (Dow Dam) during spring electrofishing, 1989-2002.

Year		Μ	Iale	Fei	male		Ν	ſale	Fei	male
class	Age	Length	Number	Length	Number	Age	Length	Number	Length	Number
	_		1999					2000		
1998	1	_	0	_	0	2	390	32	_	_
1997	2	394	3	_	0	3	446	84	_	_
1996	3	430	9	500	1	4	477	16	533	1
1995	4	481	68	525	21	5	510	65	553	18
1994	5	515	44	559	35	6	529	82	580	24
1993	6	530	27	585	13	7	540	42	600	17
1992	7	543	38	643	12	8	552	59	633	7
1991	8	562	121	643	30	9	569	157	632	21
1990	9	582	102	663	56	10	589	102	672	33
1989	10	597	64	678	49	11	599	60	677	22
1988	11	604	23	699	26	12	614	18	702	13
1987	12	608	6	708	18	13	608	4	705	4
1986	13	610	4	-	0	14	_	_	-	-
1985	14	_	0	_	0	15	_	_	730	1
1984	15	_	0	_	0	16	_	_	_	_
1983	16	-	0	_	0	17	_	-	_	-
Total			509		261			721		161
			2001					2002		
1999	2	_	_	_	_	3	432	2	_	_
1998	3	447	145	480	6	4	481	75	544	26
1997	4	478	54	538	17	5	502	69	545	60
1996	5	507	17	542	13	6	535	17	547	24
1995	6	530	52	606	19	7	542	19	608	15
1994	7	550	60	610	30	8	555	18	643	6
1993	8	565	63	641	18	9	582	7	663	7
1992	9	582	81	646	22	10	578	17	646	6
1991	10	582	54	688	35	11	596	10	698	6
1990	11	600	31	702	33	12	636	2	687	4
1989	12	613	11	705	26	13	610	3	732	3
1988	13	616	3	741	5	14	-	_	696	1
1987	14	_	-	754	2	15	—	-	_	-
1986	15	_	-	-	-	16	_	-	_	-
1985	16	_	-	-	-	17	_	-	_	-
Total			571		226			239		158

Table 5.–Mean total length (mm) at age of walleyes from tagging operation, Tittabawassee River, spring 1999-2002.

1986-2002.	
during spring,	
Tittabawassee River,	
agged at Dow Dam,	
atrix for walleyes t	
Table 6Tag return m	

Estimated	recovery rate	4.04	4.99	3.80	3.33	2.34	2.56	5.44	4.75	2.50	2.01	2.60	3.01	3.53	4.16	2.65	2.82	5.01	3.41	
Total	returns	309	590	369	240	224	293	356	319	256	226	285	263	220	218	179	165	150		4,662
	2002	0	0	0	0	0	ω	1	ω	0	0	8	6	13	25	48	85	150		349
	2001	0	-	7	-	0	1	0	S	0	ω	6	11	19	28	45	80			209
	2000	0	1	1	1	ω	0	9	6	12	6	20	19	24	38	86				231
	1999	-	ŝ	4	4	1	٢	11	15	16	32	47	58	69	127					395
	1998	0	4	0	1	1	4	12	13	18	30	54	82	95						314
	1997	2	7	4	4	S	11	11	17	36	45	74	84							295
	1996	0	0		ξ	4	11	14	24	4	50	73								224
/ear	1995	7	5	Г	5	9	6	21	31	52	55									193
overy J	1994	-	9	11	8	6	16	30	52	76										209
Reco	1993	L	12	15	18	33	49	83	150											367
	1992	6	23	20	49	51	109	165												426
	1991	10	19	26	34	52	71													212
	1990	16	23	32	44	59														174
	1989	18	64	85	68															235
	1988	36	116	161																313
	1987	89	309																	398
	1986	118																		118
Tag	year	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	Mean	Total

						Η	arvest yea	ır						
Year class	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002^{3}	Mean
1981	Ι	0.8	1.3	0.6	0.2	Ι	I	I	I	I	Ι	Ι		
1982	Ι	2.4	3.1	2.1	Ι	0.7	0.2	Ι	Ι	Ι	Ι	Ι		
1983	I	6.5	4.5	4.1	1.8	1.4	2.2	0.6	Ι	I	Ι	Ι		
1984	Ι	8.4	4.9	4.8	4.4	4.2	2.7	2.4	0.2	Ι	Ι	Ι		
1985	Ι	14.5	10.7	12.7	8.4	8.7	7.7	3.6	1.2	Ι	Ι	Ι		
1986	Ι	16.1	18.3	10.6	11.6	9.7	10.2	6.7	2.5	Ι	0.9	Ι		
1987	Ι	12.0	11.6	7.6	9.2	8.3	6.2	6.1	3.5	0.5	0.5	0.3		
1988	Ι	20.2	16.5	14.1	13.8	11.1	7.0	6.7	3.7	0.5	1.1	0.8		
1989	Ι	19.1	24.6	23.0	17.6	16.3	11.7	5.2	9.6	5.8	3.4	2.0		
1990	Ι	I	4.5	15.5	14.8	12.7	9.2	9.7	11.3	9.7	3.9	2.9		
1991	Ι	I	Ι	4.9	17.8	20.3	19.0	18.2	12.5	12.3	4.6	7.1		
1992	Ι	Ι	Ι	Ι	0.4	6.4	6.7	11.5	8.0	8.9	8.7	9.9		
1993	Ι	Ι	Ι	Ι	Ι	0.2	1.2	1.2	3.3	5.8	6.2	5.6		
1994	Ι	Ι	Ι	Ι	I	I	15.7	25.2	28.1	24.9	13.5	7.8		
1995	Ι	Ι	Ι	Ι	Ι	Ι	I	3.0	15.4	15.0	11.6	7.6		
1996	I	I	Ι	Ι	I	I	I	I	0.6	4.7	3.2	3.0		
1997	I	I	Ι	Ι	I	I	I	I	I	11.8	16.4	12.8		
1998	Ι	I	Ι	Ι	I	I	I	I	I	I	26.0	40.8		
1999	Ι	I	I	Ι	I	I	I	I	Ι	I	I	2.7		
2000	Ι	Ι	Ι	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	I		
2001	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι		
No. aged	Ι	491	224	631	500	424	401	330	512	066	438	593		
Harvest ¹	Ι	61,028	64,447	125,160	68,170	47,887	47,566	78,128	80,801	43,747	58,018	44,178	45,244	63,698
	I	(10,01/)	(0,/102)	(/ (())	(106,11)	(012,8)	(066,6)	(401,01)	(11,014)	(060,01)	(200,02)	(700,11)	(704,17)	
Exploitation	7.2	7.0	14.9	13.1	7.0	5.7	7.2	8.8	9.5	11.5	8.5	4.9	11.7	9.0
n otal mortality ²	30.3	42.0	39.8	34.6	22.9	39.5	24.6	32.7	28.8	52.5	44.8	46.8	1	36.6
¹ From previo ² Annual rate ³ 2002 age dat	us MDN for last y ta not ve	JR creel su year canno xt available	trvey report tyet be c	orts. alculated.										
)	•													

Table 7.-Walleye year class percent composition in the Saginaw Bay sport fishery, April - October harvest (2 SE of the mean), adjusted

9