BARK FACTOR EQUATIONS

FOR OAK IN MICHIGAN

GARYW. FOWLER, NEMAH G. HUSSAIN, DAVID J. COHEN, AND DEEPAK KHATRY-CHHETRI

BARK FACTOR EQUATIONS

FOR OAK IN MICHIGAN

by

Gary W. Fowler, Nemah G. Hussain, David J. Cohen, and Deepak Khatry-Chhetri

1997

Forest Information Leaflet
Forest Management Division
Michigan Department of Natural Resources
and

School of Natural Resources and Environment
The University of Michigan

NUMBER - 2-97

SUBJECT - BARK FACTORS
DATE - 31 October 97
TITLE - BARK FACTOR EQUATIONS FOR OAKS IN MICHIGAN

AUTHORS - Gary W. Fowler, Professor of Biometrics, School of Natural Resources and Environment, University of Michigan; Nemah G. Hussain, Timber Sales Program Leader, Forest Management Division, Michigan Department of Natural Resources; and David J. Cohen and Deepak Khatry-Chhetri, Ph.D. graduate students, School of Natural Resources and Environment, University of Michigan.

BACKGROUND

Bark factor (BF) is the ratio of diameter inside bark (DIB) to diameter outside bark (DOB) at a given tree height. Even though bark factor does increase with height for many species, a constant bark factor, usually determined at breast height, has been assumed, in many cases, for all tree heights for many species. Thus, the use of a constant bark factor for all tree heights will usually lead to underestimates of most tree and log solid wood volumes and overestimates of bark volume for many species.

Bark factor equations have been developed for aspen (Fowler and Hussain 1987b, Fowler 1991), jack pine (Fowler and Hussain 1991, Fowler 1993), and red pine (Fowler and Hussain 1987a, Fowler and Damschroder 1988) in Michigan where bark factor was regressed on tree height (TH). In all cases, there was a very strong relationship between BF and TH. Bark factor equations were also developed for paper birch (Fowler and Hussain 1997) in Michigan where BF was regressed on TH and DOB. Both relationships were relatively weak with the relationship to DOB being somewhat stronger.

PURPOSE

The purpose of this paper is to present bark factor prediction equations for black oak, red oak, and white oak in Michigan and show how the prediction equations may be used.

METHODS AND MATERIALS

As part of a larger study to develop new volume equations for hardwoods in Michigan, felled tree measurements were made on a total of 53 red oak trees (51 trees and two trees from two stands, respectively, from the Mackinaw State Forest) and 23 black oak and 28 white oak trees from a stand in the Pere Marquette State Forest during May-August, 1995. DIB and DOB were measured to the nearest 0.01 in . at stump height, which varied from $1-41 \mathrm{in}$., at the top of each $8.3-\mathrm{ft}$. bolt ($100-\mathrm{in}$. stick), or other nominal bolt length varying from $6-16 \mathrm{ft}$.), cut out of the stem of each tree to an approximate $3.6-\mathrm{in}$. diameter top limit (i.e., stemwood), and at the bottom and top of each 8.3 ft . bolt cut out of any limbs and top forks of each tree to an approximate 3.6-in. diameter top limit (i.e., topwood). DBH was measured to the nearest 0.1 in ., and bark thickness at DBH height was measured to the nearest 0.01 in . DBH height was 4.5 ft . from the ground except for trees forked below 4.5 ft . where DBH height was approximately 4.5 ft . above the fork. DBH varied from 3.7-24.6 in. for the data set of 104 trees.

Stemwood

The prediction data set included (1) 23 black oak trees from the Pere Marquette stand, (2) 53 red oak trees (51 and two trees from the two Mackinaw stands, respectively), and (3) 28 white oak trees from the Pere Marquette stand. This yielded 146, 340, and 171 bark factor measurements for black, red, and white oak, respectively.

The mean, minimum, and maximum DBH in in. and merchantable height (MH) in ft. for the trees of each species are shown below. MH is the height of the tree from the ground to an approximate $3.6-\mathrm{in}$. diameter top limit.

		DBH			MH		
Species	No. of Trees	\bar{x}	Min.- Max.		\bar{x}	Min. -Max.	
BO	23	15.1	$10.7-20.0$		39.08	$9.00-61.92$	
RO	53	10.5	$3.7-24.2$		37.37	$8.67-59.58$	
WO	28	13.9	$10.1-24.6$		37.07	$10.92-56.67$	

The following table shows the mean, minimum, and maximum BF, tree height to measurement in ft . (TH), and DOB at TH for the set of bark factor measurements for each species.

Species	No. of BF Measurements	BF		TH		DOB at TH	
		\bar{x}	Min.- Max.	\bar{x}	Min. -Max.	$\bar{\chi}$	Min. -Max.
BO	146	0.964	0.920-0.996	20.12	0.33-61.92	12.43	3.61-26.34
RO	340	0.976	0.916-0.998	17.94	0.25-59.58	8.69	1.90-26.70
WO	171	0.955	0.917-0.992	18.93	0.08-56.67	11.30	3.22-29.88

Topwood

The prediction data set included 19, 24, and 20 of the total of 23 black, 53 red, and 28 white oak trees, respectively. This yielded 162, 207, and 214 bark factor measurements for black, red, and white oak, respectively.

The mean, minimum, and maximum DBH in in., MH in ft., and number of topwood sticks for the trees of each species are shown below.

Species	No. of Trees	DBH		MH		No. of topwood sticks	
		\bar{x}	Min.-Max.	\bar{x}	Min. -Max.	\bar{x}	Min.-Max.
BO	19	15.9	12.5-20.0	36.18	9.00-61.92	5.4	1-10
RO	24	14.1	8.6-24.2	40.72	10.50-59.58	5.2	1-40
WO	20	14.9	10.8-24.6	32.21	10.92-56.67	6.6	1-35

The following table shows the mean, minimum, and maximum BF and DOB at the BF measurement point for the set of bark factor measurements for each species.

Species	No. of BF Measurements	BF			DOB	
		\bar{x}	Min.-Max.		\bar{x}	Min. -Max.
	162	0.974	$0.931-0.996$		6.78	$3.26-17.55$
RO	207	0.986	$0.949-0.997$		4.93	$1.99-12.35$
WO	214	0.962	$0.914-0.996$		5.88	$3.18-15.51$

RESULTS

The best prediction equations, based on simplicity, meeting the assumptions of normality and homogeneity, and having among the smallest standard errors of the estimate (sy.x) and the largest coefficients of determination (R^{2}), were:

Stemwood

Black Oak ($n=146$)

		R^{2}	
(1) $\hat{\mathrm{BF}}=0.981363-0.001396 \bullet \mathrm{DOB}$	0.270	0.011927	
(2) $\hat{\mathrm{BF}}=0.954401+0.004136 \bullet \ln \mathrm{TH}$	0.190	0.012559	
(3) $\hat{\mathrm{BF}}=0.979283-0.001303 \bullet \mathrm{DOB}+0.000401 \bullet \ln \mathrm{TH}$	0.270	0.011964	

Red Oak ($n=340$)
(4) $\hat{\mathrm{BF}}=0.997708-0.002445 \cdot \mathrm{DOB}$

$\frac{\mathrm{R}^{2}}{0.418}$	
0.275	
0.012746	
0.014227	

(5) $\hat{\mathrm{BF}}=0.962791+0.006068 \bullet \ln \mathrm{TH}$
$0.275 \quad 0.014227$
(6) $\begin{array}{r}\hat{\mathrm{BF}}=0.986153-0.001939\end{array}$ DOB $+0.003177 \bullet 1$ White Oak $(n=171)$
$\begin{array}{llll}\text { (7) } \hat{\mathrm{BF}}=0.958801-0.000349 \bullet \mathrm{DOB} & \mathrm{R}^{2} & & \mathrm{~s}_{\mathrm{y} \bullet \mathrm{x}} \\ (8) \hat{\mathrm{BF}}=0.952426+0.001065 \bullet \ln \mathrm{TH} & 0.014 & 0.015007 \\ (9) \hat{\mathrm{BF}}=0.957163-0.000276 \bullet \mathrm{DOB}+0.000357 \bullet \ln \mathrm{TH} & 0.015 & 0.015048\end{array}$

Prediction Equations 1, 4, and 7 for BO, RO, and WO, respectively, yield the following estimated bark factors.

Prediction Equations 1, 4, and 7

DOB		$\hat{B F}$		DOB	$\hat{B F}$		
	BO	RO	WO	(in.)	BO	RO	WO
3.0	0.977	0.990	0.958	17.0	0.958	0.956	0.953
4.0	0.976	0.988	0.957	18.0	0.956	0.954	0.953
5.0	0.974	0.985	0.957	19.0	0.955	0.951	0.952
6.0	0.973	0.983	0.957	20.0	0.953	0.949	0.952
7.0	0.972	0.981	0.956	21.0	0.952	0.946	0.951
8.0	0.970	0.978	0.956	22.0	0.951	0.943	0.951
9.0	0.969	0.976	0.956	23.0	0.949	0.941	0.951
10.0	0.967	0.973	0.955	24.0	0.948	0.939	0.950
11.0	0.966	0.971	0.955	25.0	0.946	0.937	0.950
12.0	0.965	0.968	0.955	26.0	0.945	0.934	0.950
13.0	0.963	0.966	0.954	27.0	0.944	0.932	0.949
14.0	0.962	0.963	0.954	28.0	0.942	0.929	0.949
15.0	0.960	0.961	0.954	29.0	0.941	0.927	0.949
16.0	0.959	0.959	0.953	30.0	0.939	0.924	0.948

Predicted Equations 2, 5, and 8 for BO, RO, and WO, respectively, yield the following estimated bark factors.

Prediction Equations 2, 5, and 8

TH (ft.)	$\hat{B F}$			TH (ft.)	$\hat{B F}$		
	BO	RO	WO		BO	RO	WO
0.25	0.949	0.954	0.951	25.5	0.968	0.982	0.956
0.5	0.952	0.959	0.952	34.0	0.969	0.984	0.956
1.0	0.954	0.963	0.952	42.5	0.970	0.986	0.956
2.0	0.957	0.967	0.953	51.0	0.971	0.987	0.957
3.0	0.959	0.969	0.954	59.5	0.971	0.988	0.957
4.5	0.961	0.972	0.954	68.0	0.972	0.988	0.957
8.5	0.963	0.976	0.955	76.5	0.972	0.989	0.957
17.0	0.966	0.980	0.955				

The predicted BF based on Equations 1, 4, and 7 varies from 0.977 for $\mathrm{DOB}=3.0$ in. to 0.939 for $\mathrm{DOB}=30.0$ in. (range $=0.038$), 0.990 for $\mathrm{DOB}=3.0$ in. to 0.924 for $\mathrm{DOB}=30.0$ in. (range $=0.066$), and 0.958 for $\mathrm{DOB}=3.0$ in. to 0.948 for $\mathrm{DOB}=30.0 \mathrm{in}$. (range $=0.010$), respectively. The ranges of predicted BF values based on Equations 2, 5, and 8 are considerably smaller, being $0.23,0.35$,
and 0.08 for black, red, and white oak, respectively. Because of these moderate ranges and the low R^{2} values of the prediction equations, you might argue that the mean bark factor yields an adequate prediction model.
$\begin{array}{lll}\text { (10) } & \mathrm{BO}: & \hat{\mathrm{BF}}=\overline{\mathrm{BF}}=\sum_{i=1}^{146} B F_{i} / 146=0.964 \\ \text { (11) } & \mathrm{RO}: & \hat{\mathrm{BF}}=\overline{\mathrm{BF}}=\sum_{i=1}^{340} B F_{i} / 340=0.976 \\ \text { (12) } \mathrm{WO}: & \hat{\mathrm{BF}}=\overline{\mathrm{BF}}=\sum_{i=1}^{171} B F_{i} / 171=0.955 & 0.016686 \\ \end{array}$

See the above two tables to find where Equations 10, 11, and 12 over- and underestimate related to Equations 1-2, 4-5, and 7-8, respectively.

Prediction Equations 1, 4, and 7 are significantly different (Bartlett's χ^{2}-test for equal variances, $\mathrm{p}<0.01$; F-test for equal slopes, $\mathrm{p}<0.001$). Prediction Equations 2, 5, and 8 are significantly different (Bartlett's χ^{2}-test for equal variances, $\mathrm{p}<0.10$; F-test for equal slopes, $\mathrm{p}<0.001$). Prediction Equations 10,11 , and 12 related to mean bark factors are also significantly different (F -test for equal variances, $\mathrm{p}=0.029$; F -test for equal means, $\mathrm{p}<0.001$). All Bonferroni pairwise comparisons of means are significantly different ($\mathrm{p}<0.001$).

Topwood

(13) $\mathrm{BO}: \hat{\mathrm{BF}}=1.000578-0.003896 \bullet \mathrm{DOB}$

R^{2}	$\mathrm{~s}_{\mathrm{y} \bullet \mathrm{x}}$
0.452	
0.011531	
0.273	
0.219	0.007826
	0.014579

Prediction Equations 13, 14, and 15 for BO, RO, and WO, respectively, yield the following estimated bark factors.

Prediction Equations 13, 14, and 15

$\begin{gathered} \text { DOB } \\ \text { (in.) } \end{gathered}$	$\hat{B F}$			$\begin{gathered} \text { DOB } \\ \text { (in.) } \\ \hline \end{gathered}$	$\hat{B F}$		
	BO	RO	WO		BO	RO	WO
3.0	0.989	0.991	0.971	12.0	0.954	0.969	0.942
4.0	0.985	0.989	0.968	13.0	0.950	0.967	0.939
5.0	0.981	0.986	0.965	14.0	0.946	0.964	0.936
6.0	0.977	0.984	0.962	15.0	0.942	0.962	0.933
7.0	0.973	0.981	0.959	16.0	0.938	0.959	0.929
8.0	0.969	0.979	0.955	17.0	0.934	0.957	0.926
9.0	0.966	0.976	0.952	18.0	0.930	0.954	0.923
10.0	0.962	0.974	0.949	19.0	0.927	0.952	0.920
11.0	0.958	0.971	0.945	20.0	0.923	0.949	0.916

The predicted BF based on Equations 13, 14, and 15 varies from 0.989 for $\mathrm{DOB}=3.0$ in. to 0.923 for $\mathrm{DOB}=20.0$ in. (range $=0.066$), 0.991 at $\mathrm{DOB}=3.0$ in. to 0.949 at $\mathrm{DOB}=20.0$ in. (range $=0.042$), and 0.971 at $\mathrm{DOB}=3.0 \mathrm{in}$. to 0.916 for $\mathrm{DOB}=20.0 \mathrm{in}$. (range $=0.055$). Because of these moderate ranges and the low R^{2} values of the prediction equations, you might argue that the mean bark factor yields an adequate prediction model.

$$
\begin{array}{llc}
& & \mathrm{s}_{\mathrm{y} \bullet \mathrm{x}} \\
\mathrm{BO}: & \hat{\mathrm{BF}}=\overline{\mathrm{BF}}=\sum_{i=1}^{162} B F_{i} / 162=0.974 & 0.015525 \\
\text { RO: } & \hat{\mathrm{BF}}=\overline{\mathrm{BF}}=\sum_{i=1}^{207} B F_{i} / 207=0.986 & 0.009157 \tag{18}\\
\text { WO: } & \hat{\mathrm{BF}}=\overline{\mathrm{BF}}=\sum_{i=1}^{214} B F_{i} / 214=0.962 & 0.016463
\end{array}
$$

See the above table to find where Equations 16, 17, and 18 over- and underestimate related to Equations 13, 14, and 15 , respectively.

Prediction Equations 13, 14, and 15 are significantly different (Bartlett's χ^{2}-test for equal variances, $\mathrm{p}<0.001$; F-test for equal slopes, $\mathrm{p}=0.028$). Prediction Equations 16, 17, and 18 related to mean bark factors are also significantly different (Bartlett's χ^{2}-test for equal variances, $\mathrm{p}<0.001$; F-test for equal means, $\mathrm{p}<0.001$). All Bonferroni pairwise comparisons of means are significantly different ($\mathrm{p}<0.001$).

Pooled prediction equations

The stemwood and topwood BF prediction equations with DOB as the independent variable are significantly different for black oak (F-test for equal variances, $\mathrm{p}>0.25$; F-test for equal slopes, $\mathrm{p}<0.001$), not significantly differently for red oak (F-test for equal variances, $\mathrm{p}>0.25$; F-test for equal slopes, $\mathrm{p}=0.995$; F-test for equal intercepts, $\mathrm{p}=0.520$), and significantly different for white oak (F-test for equal variances, $\mathrm{p}>0.25$; F -test for equal slopes <0.001). The two equations for red oak can be pooled. If the two equations for black or white oak are pooled, some prediction accuracy will be lost.

The pooled prediction equations are:

n	n		R^{2}	
		$\mathrm{~s}_{\mathrm{y} \bullet \mathrm{x}}$		
$\mathrm{BO}:$	$\hat{\mathrm{BF}}=0.987441-0.001912 \bullet \mathrm{DOB}$	308	0.366	
0.012442				
$\mathrm{RO}:$	$\hat{\mathrm{BF}}=0.998246-0.002482 \bullet \mathrm{DOB}$	547	0.457	0.011131
WO: $\hat{\mathrm{BF}}=0.968069-0.001095 \cdot \mathrm{DOB}$	385	0.100	0.015449	

Prediction Equations 19, 20, and 21 for BO, RO, and WO, respectively, yield the following estimated bark factors.

Prediction Equations 19, 20, and 21

$\begin{gathered} \text { DOB } \\ \text { (in.) } \end{gathered}$	$\hat{B F}$			$\begin{gathered} \text { DOB } \\ \text { (in.) } \end{gathered}$	$\hat{B F}$		
	BO	RO	WO		BO	RO	Wo
3.0	0.982	0.991	0.965	17.0	0.955	0.956	0.949
4.0	0.980	0.988	0.964	18.0	0.953	0.954	0.948
5.0	0.978	0.986	0.963	19.0	0.951	0.951	0.947
6.0	0.976	0.983	0.961	20.0	0.949	0.949	0.946
7.0	0.974	0.981	0.960	21.0	0.947	0.946	0.945
8.0	0.972	0.978	0.959	22.0	0.945	0.944	0.944
9.0	0.970	0.976	0.958	23.0	0.943	0.941	0.943
10.0	0.968	0.973	0.957	24.0	0.942	0.939	0.942
11.0	0.966	0.971	0.956	25.0	0.940	0.936	0.941
12.0	0.964	0.968	0.955	26.0	0.938	0.934	0.940
13.0	0.963	0.966	0.954	27.0	0.936	0.931	0.939
14.0	0.961	0.963	0.953	28.0	0.934	0.929	0.937
15.0	0.959	0.961	0.952	29.0	0.932	0.926	0.936
16.0	0.957	0.959	0.951	30.0	0.930	0.924	0.935

Note that the BF estimates for RO are very close to those of Equation 4 for stemwood and Equation 14 for topwood. BF estimates for BO are (1) higher than those of Equation 1 for $\mathrm{DOB}<11.0 \mathrm{in}$. and lower for $\mathrm{DOB}>11.0 \mathrm{in}$., and (2) lower than those of Equation 13 for $\mathrm{DOB} \leq 6.0 \mathrm{in}$. and higher for $\mathrm{DOB} \geq 7.0 \mathrm{in}$. BF estimates for WO are (1) higher than those of Equation 7 for $\mathrm{DOB}<13.0 \mathrm{in}$. and lower for $\mathrm{DOB}>13.0 \mathrm{in}$., and (2) lower than those of Equation 15 for $\mathrm{DOB} \leq 6.0 \mathrm{in}$. and higher for $\mathrm{DOB} \geq 7.0 \mathrm{in}$.

The predicted BF based on Equations 19, 20, and 21 varies from 0.982 for $\mathrm{DOB}=3.0 \mathrm{in}$. to 0.930 for $\mathrm{DOB}=30.0 \mathrm{in}$. (range $=0.052$), 0.991 for $\mathrm{DOB}=3.0 \mathrm{in}$. to 0.924 for $\mathrm{DOB}=30.0 \mathrm{in}$. (range $=0.067$), and 0.965 for $\mathrm{DOB}=3.0$ in. to 0.935 (range $=0.030$), respectively. Because of these moderate ranges and the low R^{2} values of the prediction equations, you might argue that the mean bark factor yields an adequate prediction model.

The stemwood and topwood mean BFs are significantly different for black oak (F-test for equal variances, $\mathrm{p}=0.177$; F -test for equal means, $\mathrm{p}<0.001$), red oak (F -test for equal variances, $\mathrm{p}<0.001$; F-test for equal means, $\mathrm{p}<0.001$), and white oak (F -test for equal variances, $\mathrm{p}=0.227$;

F-test for equal means, $\mathrm{p}<0.001$). If the stemwood and topwood bark factors are pooled, some prediction accuracy will be lost.

The pooled mean bark factors are:
$\begin{array}{lll}\text { (22) } & \mathrm{BO}: & \hat{\mathrm{BF}}=\overline{\mathrm{BF}}=\sum_{i=1}^{308} B F_{i} / 308=0.969 \\ & 0.015606 \\ \text { (23) } & \mathrm{RO}: & \hat{\mathrm{BF}}=\overline{\mathrm{BF}}=\sum_{i=1}^{547} B F_{i} / 547=0.980 \\ \text { (24) } & \mathrm{WO}: & \hat{\mathrm{BF}}=\overline{\mathrm{BF}}=\sum_{i=1}^{385} B F_{i} / 385=0.015084\end{array}$

See the above table to find where Equations 22, 23, and 24 over- and underestimate related to Equations 19, 20, and 21, respectively.

Bark thickness

For the stemwood data set ($n=657$), average bark thickness (BT) was significantly different for the three oak species (Bartlett's χ^{2}-test for equal variances, $\mathrm{p}=0.396$; F-test for equal means, $\mathrm{p}=0.001$). Average bark thickness was 0.485 in. (min. $=0.015$, max. $=1.285$) for black oak, 0.252 in. $(\min .=0.010, \max .=1.200)$ for red oak, and $0.519(\min .=0.035, \max .=1.600)$ for white oak. BT was positively related to $\mathrm{DOB}(\mathrm{BO}: \mathrm{r}=0.873 ; \mathrm{RO}: \mathrm{r}=0.858$; WO: $\mathrm{r}=0.815$) with $\mathrm{p}<0.001$ for each species. BT was positively related to $\mathrm{DBH}(\mathrm{BO}: \mathrm{r}=0.429 ; \mathrm{RO}: \mathrm{r}=0.502 ; \mathrm{WO}: \mathrm{r}=0.534$) and negatively related to $\mathrm{TH}(\mathrm{BO}: \mathrm{r}=-0.814 ; \mathrm{RO}: \mathrm{r}=-0.527$; WO: $\mathrm{r}=-0.686)$ with $\mathrm{p}<0.001$ in each case. Average BTs for various DOB and TH classes for the three oak species are as follows.

DOB Class (in.)	BT			TH Class (ft.)	BT		
	BO	RO	WO		BO	RO	WO
≤ 5.00	0.054	0.037	0.121	≤ 0.50	0.731	0.410	0.699
5.01 to 10.00	0.211	0.152	0.379	0.51 to 4.50	0.711	0.439	0.722
10.01 to 15.00	0.535	0.470	0.589	4.51 to 10.00	0.650	0.260	0.561
15.01 to 20.00	0.730	0.733	0.737	10.01 to 20.00	0.547	0.271	0.570
>20.00	0.900	0.828	1.080	20.01 to 30.00	0.453	0.155	0.472
				30.01 to 40.00	0.296	0.084	0.326
				40.01 to 50.00	0.102	0.040	0.183
				>50.00	0.083	0.044	0.101

BT is smallest for RO with WO having somewhat larger BT than BO. In general, BT increases with DOB and decreases with TH .

For the topwood data set ($n=583$), BT was significantly different for the three oak species (Bartlett's χ^{2}-test for equal variances, $\mathrm{p}<0.001$; F-test for equal means, $\mathrm{p}=0.001$). Average BT was 0.203 in . ($\min =0.015, \max .=0.840)$ for black oak, 0.077 in . $(\min .=0.010, \max .=0.555)$ for red oak, and 0.240 in . $(\min .=0.015, \max =0.900)$ for white oak. BT was positively related to DOB (BO: $\mathrm{r}=0.888$; RO: $\mathrm{r}=0.771$; WO: $\mathrm{r}=0.877$ with $\mathrm{p}<0.001$ for each species) and DBH (BO: $\mathrm{r}=0.303, \mathrm{p}<0.001$; RO: $\mathrm{r}=0.149, \mathrm{p}=0.032$; WO: $\mathrm{r}=0.235, \mathrm{p}<0.001$). Average BTs for various DOB classes for the three oak species are as follows:

DOB Class (in.)	BT		
	BO	RO	WO
≤ 5.00	0.051	0.040	0.122
5.01 to 7.00	0.140	0.077	0.243
7.01 to 9.00	0.268	0.211	0.389
9.01 to 11.00	0.428	0.294	0.530
11.01 to 13.00	0.559	0.332	0.632
13.01 to 15.00	0.583	-	0.762
15.01 to 17.00	0.635	-	0.780
>17.00	0.760	-	-

BT is smallest for RO with WO having larger BT than BO . BT increases with DOB.

Comparison with other BF equations

Fowler (1993) showed that while there were significant species differences between BF equations for aspen, jack pine, and red pine, there was a very strong relationship between BF and tree height for each species (i.e., $\mathrm{R}^{2}>0.97$ for each species). BF was a function of TH and $\ln \mathrm{TH}$, showing that BF increased with TH to some maximum and then decreased for larger THs with the steepness of the decrease depending on the species. For all three species, BF was not strongly related to DBH or DOB at a given TH.

For paper birch (Fowler and Hussain 1997), BF significantly increased with DOB at TH $\left(\mathrm{R}^{2}=0.219\right)$ and significantly decreased with $\ln T H\left(\mathrm{R}^{2}=0.166\right)$ for stemwood, while $B F$ significantly increased with DOB for topwood $\left(\mathrm{R}^{2}=0.218\right)$. BF was much more variable than for aspen, red pine, and jack pine.

This study shows that the three oak species have BFs that are quite variable and prediction equations with the same independent variables as for paper birch. For stemwood, BF decreased with DOB and increased with TH, while for topwood BF decreased with DOB. These prediction equations were significant, but they were only moderately strong at best, being only somewhat stronger, in general, than the prediction equations for paper birch. The BF equations were significantly different for the three species, and for topwood versus stemwood except for red oak.

GUIDELINES FOR USERS

We recommend use of the following equations for black, red, and white oak when accurate estimates of bark factors are desired:

Stemwood

- Black oak
(1) $\hat{\mathrm{BF}}=0.981363-0.001396 \cdot \mathrm{DOB}$
(2) $\hat{\mathrm{BF}}=0.954401+0.004136 \cdot \ln \mathrm{TH}$
- Red oak
(3) $\hat{\mathrm{BF}}=0.997708-0.002445 \cdot \mathrm{DOB}$
(4) $\hat{\mathrm{BF}}=0.962791+0.006068 \bullet \ln \mathrm{TH}$
- White oak
(5) $\hat{\mathrm{BF}}=0.958801-0.000349 \bullet \mathrm{DOB}$
(6) $\hat{\mathrm{BF}}=0.952426+0.001065 \bullet \ln \mathrm{TH}$

Use Equations 1, 3, and 5 if DOB is measured. Use Equations 2, 4, and 6 when only TH is measured.

Topwood

- (7) $\mathrm{BO}: \hat{\mathrm{BF}}=1.000578-0.003896 \cdot \mathrm{DOB}$
- (8) RO: $\hat{\mathrm{BF}}=0.998427-0.002448 \cdot \mathrm{DOB}$
- (9) WO: $\hat{\mathrm{BF}}=0.981399-0.003250 \bullet \mathrm{DOB}$

The equation for stemwood and topwood pooled could be used if DOB is measured with moderate loss in accuracy for black and white oak and little loss in accuracy for red oak. The pooled equations for black and white oak are more accurate for stemwood compared to topwood.

- (10) $\mathrm{BO}: \hat{\mathrm{BF}}=0.987441-0.001912 \bullet \mathrm{DOB}$
- (11) RO: $\hat{\mathrm{BF}}=0.998246-0.002482 \bullet$ DOB
- (12) WO: $\hat{\mathrm{BF}}=0.968069-0.001095 \cdot \mathrm{DOB}$

For reasonable accuracy in many situations, the following constants could be used for bark factors.

DOB Class (in.)	Stemwood			Topwood		
	BO	RO	WO	BO	RO	WO
DOB ≤ 5.0	0.976	0.988	0.957	0.985	0.989	0.968
$5.0<\mathrm{DOB} \leq 10.0$	0.970	0.978	0.956	0.969	0.979	0.955
$10.0<\mathrm{DOB} \leq 15.0$	0.963	0.966	0.955	0.950	0.967	0.939
$15.0<\mathrm{DOB} \leq 20.0$	0.956	0.954	0.953	0.930	0.954	0.923
DOB>20.0	0.946	0.936	0.950	0.910	0.937	0.907

LITERATURE CITED

Fowler, G. W. 1991. An aspen bark factor equation for Michigan. North. J. Appl. For. 8(1): 12-15.

Fowler, G. W. 1993. A jack pine bark factor equation for Michigan. North. J. Appl. For. 10(2): 86-89.

Fowler, G. W., and L. J. Damschroder. 1988. A red pine bark factor equation for Michigan. North. J. Appl. For. 5(1): 28-30.

Fowler, G. W., and N. G. Hussain. 1987a. Bark factor equation for red pine. Michigan DNR For. Infor. Leaflet 1-87. 2 p .

Fowler, G. W., and N. G. Hussain. 1987b. Bark factor equation for aspen. Michigan DNR For. Infor. Leaflet 2-87. 2 p .

Fowler, G. W., and N. G. Hussain. 1991. Bark factor equation for jack pine in Michigan. Michigan DNR For. Infor. Leaflet 1-91. 5 p.

Fowler, G. W., and N. G. Hussain. 1997. Bark factor equations for paper birch in Michigan. Michigan DNR For. Infor. Leaflet 1-97. 12 p .

Husch, B., C. I. Miller, and T. W. Beers. 1982. Forest Mensuration. John Wiley and Sons, Inc., NY. 402 p.

TH (ft.)	Stemwood		
	BO	RO	WO
$\mathrm{TH} \leq 0.5$	0.951	0.956	0.952
$0.5<\mathrm{TH} \leq 4.5$	0.958	0.968	0.953
$4.5<\mathrm{TH} \leq 10.0$	0.962	0.974	0.954
$10.0<\mathrm{TH} \leq 20.0$	0.966	0.978	0.955
$20.0<\mathrm{TH} \leq 30.0$	0.968	0.982	0.955
$30.0<\mathrm{TH} \leq 40.0$	0.970	0.985	0.956
$40.0<\mathrm{TH} \leq 50.0$	0.971	0.987	0.956
$\mathrm{TH}>50.0$	0.972	0.988	0.957

The stemwood and topwood BF values for RO related to DOB are very similar.
The following constants for bark factor could be used for simplicity with moderately approximate results, especially for a large number of sticks.

Species	Stemwood	Topwood	Stemwood and Topwood
BO	0.964	0.974	0.969
RO	0.976	0.986	0.980
wo	0.955	0.962	0.959

The prediction equations can be used to estimate BF at any DOB or TH. Since $\mathrm{BF}=\mathrm{DIB} / \mathrm{DOB}, \mathrm{DIB}$ can be estimated as $\hat{\mathrm{DIB}}=\hat{\mathrm{BF}} \bullet \mathrm{DOB}$ and DOB can be estimated as $\hat{D O B}=\mathrm{DIB} / \hat{\mathrm{BF}}$. Past DOB and DOB growth can be determined from past DIB growth as follows:

$$
\begin{aligned}
& \text { Past DOB Growth }=\text { Past DIB Growth } / \hat{\mathrm{BF}} \\
& \text { and } \\
& \text { Past } \mathrm{DOB}=\text { Present } \mathrm{DOB}-\text { Past DOB Growth }
\end{aligned}
$$

where past DIB growth might be obtained with an increment borer.
Specific uses of the prediction equations include: (1) estimation of the solid wood and bark volume of standing trees, (2) estimation of bark volume, or peeled volume from unpeeled volume, of felled tree sections, (3) growth studies, and (4) estimating tree form (e.g., Girard Form Class).

See Husch et al. (1982) for a detailed discussion on bark factors.

John M. Robertson

 Brian Hutchins Rich Mergener Rich Mergener
Mike Paluda
 Bill Maki

Edwin Moore

Debbie Begalle

Dennis Nezich
Bill Brondyke

Gilbert Joy
Dean Reid
(send Dean Reid mail to Naubinway)
Jeff Stampfly

Dayle Garlock

Bill O'Neill

Joe Jarecki Dennis Vitton

Joe Fields

Courtney Borgondy

Susan Thiel

Don Torchia

Ken Alto
Kim Dufresne

Tim Tennis
(517) 373-1275 (517) 275-5211 (906) $341-2518$ (810) 229-9152
(906) 228-6561
(906) 249-1497
(517) 732-4481

FOREST MANAGEMENT DIVISION

UP

(906) 353-6651
(906) 786-2351
(906) 786-2351 Escanaba Office, 6833 Hwy $2,41 \&$ M-35, Gladstone, MI 49837

33-513
DIVISION OFFICE, P.O. Box 30452, Lansing, MI 48909-7952
Forest Fire Experiment Station, 1337 E. Robinson Lake Rd, Box 68, Roscommon, MI 48653
Wyman Nursery, Rt No 2, Box 2004, Manistique, MI 49854
State Forest Tree Improvement Center, 4631 Bishop Lake Rd, Howell, MI 48843
Marquette Office, 1990 US-41 South, Marquette, MI 49855
Marquette Warehouse \& Repair Shop, 110 Ford Rd., Marquette, MI 49855
Gaylord Warehouse \& Repair Shop, 540 S. Otsego Âve, PO Box 596, Gaylord, MI 49734

ER PENINSULA - Bernie Hubbard (Newberry Office) 906-293-5131

Baraga Office, 427 US-41 North, Baraga, MI 49908
Newberry Office, Rte 4, Box 796, M28 / M123, Newberry, MI 49868
(906) 353-6651
(906) 288-3321
(906) 224-2771
(906) 875-6622
(906) 563-9248
(906) 246-3245
(906) 786-2354
(906) 753-6317
(906) 346-9201
(906) 485-1031
(906) 249-1497
(906) 293-3293
(906) 635-5281
(906) 477-6048
(906) 297-2581
(906) 452-6227
(906) 499-3346

BARAGA FOREST MANAGEMENT UNIT, 427 US-41 North, Baraga, MI 49908
Twin Lakes Field Office, Rt 1, Box 234, Toivola, MI 49965
Wakefield Field Office, 1405 East US-2, Wakefield, MI 49968
CRYSTAL FALLS FOREST MANAGEMENT UNIT, 1420 US-2 West, Crystal Falls, MI 49920 Norway Field Office, US-2 West, PO Box 126, Norway, MI 49870 Felch Field Office, PO Box 188, Felch, MI 49831
ESCANABA FOREST MANAGEMENT UNIT, 6833 Hwy 2, 41 \& M-35, Gladstone, MI 49837 Stephenson Field Office, West 5420 River Road, Stephenson, MI 49887
GWINN FOREST MANAGEMENT UNIT, 410 West M-35, Gwinn, MI 49841 Ishpeming Field Office, 1985 US 41 Hwy West, Ishpeming, MI 49849 Marquette Field Office, 110 Ford Road, Marquette, MI 49855
NEWBERRY FOREST MANAGEMENT UNIT, Box 428, 5666 M 123 S., Newberry, MI 49868
SAULT STE MARIE FOREST MANAGEMENT UNIT, Box 798, 2001 Ashmun, Sault Ste Marie, MI 49783 Naubinway Field Office, PO Box 287, US 2, Naubinway, MI 49762 Detour Field Office, PO Box 92, M134, Detour, MI 49725
SHINGLETON FOREST MANAGEMENT UNIT, M-28 West, PO Box 67, Shingleton, MI 49884 Seney Field Office, Corner of M-77 \& M-28, PO Box 72, Seney, MI 49883 Wyman Nursery, Rt No 2, Box 2004, Manistique, MI 49854
NORTHERN LOWER PENINSULA - Jim McMHIIan (Roscommon Office) 517-275-5151 (517) 732-3541 Gaylord Office, 1732 West M-32, Box 667, Gaylord, MI 49734
616) 775-9727 Cadillac Office, 8015 Mackinaw Trail, Cadillac, MI 49601
(517) 826-3211 Mio Office, 191 S. Mt. Tom Rd, Box 939, Mio, MI 48647
(517) 275-5151 Roscommon Office, 8717 N. Roscommon Rd, Box 128, Roscommon, MI 48653
(517) 785-4251

ATLANTA FOREST MANAGEMENT UNIT, 13501 M-33, Atlanta, MI 49709
Alpena Field Office, 4343 M-32 West, Alpena, MI 49707
(517) 733-8775
(517) 731-5806
(616) $533-8341$
(616) 238-9314
(616) 539-8564
(517) 983-4101
(616) 775-9727
(616) 745-4651
(616) 824-3591
(616) 734-5840
(616) 861-5636
(616) 922-5280
(616) 258-2711
(616) 325-4611
(517) 426-9205
(517) 539-6411
(517) 846-4104
(517) 687-7771
(517) 348-6371
(517) 736-8336
(517) $826-3211$
(517) 275-4622
(517) 422-2897
(517) 345-0472

SOUTHERN
(517) 241-9048
(517) 675-5111
(517) 872-4009
(616) 685-6851
(616) 788-5062
(616) 673-5819
(616) 795-9393
(517) 780-7901
(810) 724-4804
(810) 229-5762

Onaway Field Office, Hwy M-211, Box 32, Onaway, MI 49765
GAYLORD FOREST MANAGEMENT UNIT, 1732 West M-32, Box 667, Gaylord, MI 49734 Bellaire Field Office, 701 E. Cayuga St., PO Box 278, Bellaire, MI 49615 Indian River Field Office, PO Box 10, 6984 Wilson, Indian River, MI 49749 Pellston Field Office, 304 Stimson, Box 126, Pellston, MI 49769
PIGEON RIVER COUNTRY FOREST MANAGEMENT UNIT, 9966 Twin Lakes Rd, Vanderbilt, MI 49795
CADILLAC FOREST MANAGEMENT UNIT, 8015 Mackinaw Trail, Cadillac, MI 49601 Baldwin Field Office, Route 2, Box 2810, Baldwin, MI 49304 Manton Field Office, 521 N. Michigan, Manton, MI 49663 Evart Field Office, 951 W. 7th Street, Evart, MI 49631 Oceana Field Office, 1757 E. Hayes Rd, M-20, Shelby, MI 49455
TRAVERSE CITY FOREST MANAGEMENT UNIT, 970 Emerson, Traverse City, MI 49686 Kalkaska Field Office, 2089 N. Birch St., Kalkaska, MI 49646 Platte River Field Office, 15210 U.S. 31 Hwy, Beulah, MI 49617
GLADWIN FOREST MANAGEMENT UNIT, 801 N. Silverleaf, PO Box 337, Gladwin, MI 48624 Harrison Field Office, 708 N. First St., Harrison, MI 48625
Standish Field Office, 527 N. M76, Box 447, Standish, MI 48658 Sanford Field Office, 118 W. Saginaw, MI 48657
GRAYLING FOREST MANAGEMENT UNIT, 1955 N. I-75 BL, Grayling, MI 49738 Lincoln Field Office, 408 Main St, PO Box 122, Lincoln, MI 48742 Mio Field Office, 191 S. Mt. Tom Rd, Box 939, Mio, MI 48647
ROSCOMMON FOREST MANAGEMENT UNIT, Box 218, Roscommon, MI 48653 Houghton Lake Field Office, 180 S. Harrison Rd, Houghton Lake, MI 48629 West Branch Field Office, 2389 South M-76, West Branch, MI 48661

LOWER PENINSULA - Ben Kinsey (Lansing-Knapp's Centre) 5 17-241-9048
Southern Lower Peninsula, PO Box 30028, Knapp's Centre, 3rd Floor, Lansing, MI 48909
Rose Lake Warehouse and Repair Shop, 9870 W. Stoll Rd, Haslett, MI 48840 Cass City Field Office, 4017 E. Caro Rd, Cass City, MI 48726
Plainwell Office, 621 N. 10th Street, Plainwell, MI 49080
Muskegon Field Office, 7550 E. Messinger Rd, Twin Lake, MI 49457
Allegan Field Office, 4590 118th Avenue, Allegan, MI 49010
Yankee Springs Field Office, 420 Bassett Lake Road, Middleville, MI 49333
Jackson Office, 301 E. Louis Glick Hwy, Jackson, MI 49201
Imlay City Field Office, 571 East Borland, Imlay City, MI 48444
Brighton Field Office, 6360 Chilson Rd, Howell, MI 48843 revised March 2, 1999

